Recap on Flux Return Study

David Kapukchyan

Cold QCD Topical Group Meeting

September 6, 2016

Purpose/Goals of Study

- To see how different thicknesses of the Flux Return (i.e. Plug Door) will affect the energy resolution of the Forward Calorimeters.
 - Flux Return is used as a means of returning the magnetic field of the BABAR magnet
- Run simulations using different plug door thicknesses and look at reconstructed energy vs. counts.
 - Do some fitting to this data to characterize the energy distribution and obtain some kind of mean and standard deviation.
- Run same simulations using different energies/pseudorapidities for those thicknesses.

Work so Far

- Ran simulations with charged pions (π^-)going through various thicknesses of the plug door with fixed pseudorapidity(2.0) and fixed energy (30 GeV).
- Also ran simulations with various energies and fixed plug door thickness(10.2 cm) and same fixed psuedorapidity.
- The counts were plotted as a function of the reconstructed energy from both the EMCAL and HCAL and Gaussian fits were done to this data.
- Using these fits the tail was characterized by integrating the histograms above from 0 to μ_{gauss} -2* σ_{gauss} and divided by the total number of entries.
 - This quantity was called R

The Histograms showing Counts vs. Energy

- Plot on the right is for 10.2 cm (default)
- The histograms for the other thicknesses can be found in the backup slides and are as follows
 - 20.4 cm (double)
 - 5.1 cm (half)
 - 2.55 cm (quarter)
 - 0.1 cm (millimeter)
 - 100 cm
 - 1000 cm
- Some were done as sanity checks to see how reconstruction handles extreme values

View of the detector for the histogram above

- The figure on the right is what the detector geometry looks like for the histogram above
- The other thickness can be found in the backup slides

Flux Returns

The 100 cm histogram

- One such extreme. You can see how the energy is being suppressed despite it overlapping with the other volumes.
- 1000 cm shown in backup is empty meaning it is too large to handle

Simulations with different Energies

- Ran simulations with π^- at energies 10-120 GeV in 10 GeV steps keeping the plug door dimension its default value (10.2 cm).
- Read off the Mean (\bar{E}) and RMS (ΔE) values from histograms above
- Plotted \bar{E} , ΔE , $\Delta E/\bar{E}$ as a function of the incoming π^- energy
- Did linear fits to those plots that looked linear
- This includes all of the plots except ΔE/Ē
- The histograms for the various energies can also be found in the backup

Goals

- The plots above show that things are behaving as expected
- The mean energy is increasing and the resolution is decreasing (i.e. getting wider) in a linear fashion
- Even $\Delta E/\bar{E}$ vs. Incoming π^- Energy seems to following known trend
- Since the values of $\Delta E, \bar{E}$ were read off the histograms, a better value to use may be from a fit.
- Also, to understand and characterize the tail of the histograms fitting may be needed
- So onward to fitting!

Fitting the Histograms

- Gaussian fits were performed on the histograms for the various thicknesses in the following way:
 - First fit was done to the whole range of the histogram
 - Second fit was done to $\mu_{\rm fit}\pm2\sigma_{\rm fit}$
 - Third fit was to $\mu_{\text{fit}}\pm 2\sigma_{\text{fit}}$ of the second fit
- Next, the histogram was integrated from 0 to $\mu_{\rm fit}$ -2 $\sigma_{\rm fit}$ of the third fit and divided by the total number of entries.
 - This quantity will be called R.
- R was plotted as a function of the flux return thickness.

Sample of the Fits

- The plot on the right is for the default plug door length of 10.2 cm
- See Backup Slides for the other thickness values

R > 2sigma vs. Thickness of Flux Return

R vs. Thickness

- The plot on the right shows R as a function of the thickness of the plug door
- It should increase as the thickness gets larger but instead It is decreasing as the thickness gets larger.
- The reason for this may be that the tail is being obscured by the Gaussian and as the thickness increases the tail disappears and the distribution becomes more Gaussian

Conclusions/Work to be Done

- The different thicknesses are reducing the charged hadron energy and at the same time the energy resolution is also decreasing as expected
- The fitted histograms seem to overlap the tail and obscure the R value
- Working on a way to get "better" fits
- Once that is done then do a similar analysis at different energies using the same varying plug door thicknesses
- Also need to make plots of $\sigma_{\rm fit}$ and $\sigma_{\rm fit}/\mu_{\rm fit}$ vs. Thickness
- Thank you to all those who helped in this study

Backup Slides

Different Thickness Histograms

1000 cm

100 cm Geometry

20.4 cm (Double) Plots

5.1 cm (Half) Plots

2.55 cm (Quarter) Plots

0.1 cm (Millimeter) Plots

Different Energy Histograms

е

9

Fitted Histograms

20.4 cm (Double) Plots

5.1 cm (Half) Plots

2.55 cm (Quarter) Plots

0.1 cm (Millimeter) Plots

